排队论是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,市内电话占线等现象。排队论的基本思想是 1909 年丹麦数学家、科学家,工程师 A. K. 埃尔朗在解决自动电话设计问题时开始形成的,当时称为话务理论。他在热力学统计平衡理论的启发下,成功地建立了电话统计平衡模型,并由此得到一组递推状态方程,从而导出著名的埃尔朗电话损失率公式。
排队论的组成部分是什么?
排队系统又称服务系统。服务系统由服务机构和服务对象(顾客)构成。服务对象到来的时刻和对他服务的时间(即占用服务系统的时间)都是随机的。排队系统包括三个组成部分:输入过程、排队规则和服务机构。输入过程考察的是顾客到达服务系统的规律。它可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。例如,在生产线上加工的零件按规定的间隔时间依次到达加工地点,定期运行的班车、班机等都属于确定型输入或相继到达的顾客的间隔时间 T 服从负指数分布,即 P(T ≤ t) = 1 – e-λt,式中 λ 为单位时间顾客到达数的期望,称为平均到达率;1/λ 为平均间隔时间。在排队论中,讨论的输入过程主要是随机型的。